

CREATING RESOURCE AGENTS FOR COLLABORATIVE ENGINEERING
ENVIRONMENT (CEE) RESEARCH USING THE COMMON OBJECT REQUEST
BROKER ARCHITECTURE (CORBA) FRAMEWORK

March 2001

MAJ JOHN M. EMMERT, LUIS CONCHA, LT KEITH PEDERSEN, CAPT DIANE
STARKEY

DISTRIBUTION UNLIMITED; REQUESTS SHALL BE REFERRED TO AFRL/IFSD,
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334.

AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIAL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

Standard Form 298 (Rev. 8-98) Page 1 of 2

file://E:\ffcs\final\emmert_200105041320.298.html 04/17/2001

REPORT DOCUMENTATION PAGE

1. REPORT DATE (DD-

MM-YYYY)

27-03-2001

2. REPORT TYPE

Technical Report
3. DATES COVERED (FROM - TO)

xx-xx-2001 to xx-xx-2001

4. TITLE AND SUBTITLE

Creating Resource Agents for Collaborative
Engineering

Unclassified

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Emmert, John M. ;
Concha, Luis M. ;
Pedersen, Keith E. ;
Starkey, Diane L. ;

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS

Air Force Research Laboratory
Air Force Material Command

Wright-Patterson AFB , OH 45433-7334

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND

ADDRESS

,

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

A
PUBLIC RELEASE

,

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Standard Form 298 (Rev. 8-98) Page 2 of 2

file://E:\ffcs\final\emmert_200105041320.298.html 04/17/2001

In this report we describe the setup of a collaborative engineering environment (CEE) for performing
research on the performance of distributed systems. We provide the basis for implementing a multi-tiered
host network that is capable of operating across several different computing platforms without
modification to system software. The CEE allows multiple processes to be launched on remote systems
taking advantage of distributed processing capabilities. The object broker within the environment
provides a platform to test and analyze ?smart? network software. Smart network software includes but
is not limited to algorithms and methods to determine which available processor is the best choice for
performing a particular task or operation.

15. SUBJECT TERMS

CORBA; CEE; Distributed Computing; Collaborative Engineering; Resource Agents

16. SECURITY CLASSIFICATION OF: 17.
LIMITATION

OF ABSTRACT

Public
Release

18. NUMBER OF

PAGES

31

19a. NAME OF RESPONSIBLE

PERSON

Fenster, Lynn
lfenster@dtic.mil

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER

International Area Code

Area Code Telephone Number

703 767-9007
DSN 427-9007

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
27-03-2001

2. REPORT TYPE
technical

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Creating Resource Agents for Collaborative Engineering
Environment (CEE) Research Using the Common Object Request

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Emmert, John M; Author

5d. PROJECT NUMBER

Concha, Luis M; Author
Pedersen, Keith E; Author

5e. TASK NUMBER

Starkey, Diane L; Author

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
A Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this report we describe the setup of a collaborative engineering environment (CEE) for
performing research on the performance of distributed systems. We provide the basis for
implementing a multi-tiered host network that is capable of operating across several
different computing platforms without modification to system software. The CEE allows
multiple processes to be launched on remote systems taking advantage of distributed
processing capabilities. The object broker within the environment provides a platform to test
and analyze “smart” network software. Smart network software includes but is not limited to
algorithms and methods to determine which available processor is the best choice for
performing a particular task or operation.

15. SUBJECT TERMS
CORBA; CEE; Distributed Computing; Collaborative Engineering; Resource Agents

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
John M. Emmert

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

Unclassified
Unlimited

30

19b. TELEPHONE NUMBER (include area
code)
704-687-4323
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

 2

1. INTRODUCTION..3

2. LOCATING AND INSTALLING THE CORBA SOFTWARE ...5

3. CREATING IDL FILES ...6

4. CREATING C++ RESOURCE AGENTS ...8

5. CREATING JAVA RES OURCE AGENTS..13

6. CREATING C++ CLIENTS ..17

7. CREATING JAVA CLIENTS ..20

8. SUMMARY..21

9. FUTURE WORK..22

10. APPENDIX ..22

 3

1. INTRODUCTION

1.1. Most software applications are designed for a specific hardware platform and
operating system. However, often an application is required on an unsupported
platform. One way to address this problem is to port the application's code and
compile it for the unsupported platform. This typically requires many tedious, error
prone man-hours of work, and after the code has been compiled for the unsupported
platform, it often results in less than optimal performance. In order to avoid this
overhead and poor performance, a better solution is to execute the application on the
platform for which it was designed and interface to the application from the
unsupported platform. This solution requires interoperability among various
platforms.

1.2. Timely, accurate information is vital to Air Force war fighting capability.
Often, required information makes use of servers or data available at remote
locations accessible through a host network. This requires interoperability
among various platforms and operating systems.

1.3. To address interoperability issues and intercommunication among
applications written for different operating systems executing on various
hardware platforms, the Object Management Groupi (OMG) has created the
Common Object Request Broker Architectureii (CORBA) framework. The
CORBA framework was introduced in 1991 to allow applications to
communicate with each other no matter where they are located. They did this by
defining a standard protocol by which applications can communicate through the
use of an interface description language (IDL) interface. The IDL is a language-
independent specification to provide programmers the option of choosing the
most appropriate operating system and platform for creating and executing a
specific application. They also allow the integration of various applications
through the use of a network. There are actually many other Agent types
available1; however, we chose the CORBA system based on its wide usage and it
is distributed freely.

1.4. The IDL interface allows us to create and execute software agents
independent of any operating system or execution platform2. For example a C++
program written for a unix based workstation could be executed from a Pentium
based PC running MSDOS without the need to recompile the code for the unix
workstation. Software agents communicate together using an agent
communication language. The agent provides a message based interface
between objects3. Several definitions have been applied to agent4:

1.4.1. MuBot Agent: The term agent is used to represent two orthogonal
concepts. First, the agents ability for autonomous execution. Second, the
ability for the agent to perform domain oriented reasoning5.

i Information on the OMG is available at http:\\www.omg.org
ii Information on CORBA is available at http:\\www.corba.org

 4

1.4.2. AIMA Agent: Anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through
effectors6.

1.4.3. Maes Agent: Computational systems that inhabit some complex
dynamic environment, sense and act autonomously in this environment,
and by doing so realize a set of goals or tasks for which they are designed7

1.4.4. KidSim Agent: Persistent software entity dedicated to a specific
purpose8.

1.4.5. Hayes-Roth Agent: Agents continuously perform three functions.
First, perception of dynamic conditions in the environment. Second,
action to affect conditions in the environment. Third, reasoning to
interpret perceptions, solve problems, draw inferences, and determine
actions9.

1.4.6. IBM Agent: Software entities that carry out some set of operations
on behalf of user or another program with some degree of independence or
autonomy10.

1.4.7. Wooldridge-p; Jennings Agent: A hardware or software-based
computer that enjoys the following properties: autonomy, social ability,
reactivity, and pro-activeness11.

1.4.8. SodaBot Agent: Programs that engage in dialogs and negotiate and
coordinate transfer of information12.

1.4.9. Brustoloni Agent: Systems capable of autonomous, purposeful
action in the real world13.

In summary, agents are capable of operating autonomously and yet maintaining
the ability to communicate socially.

1.5. For this report, we will define the client as the process requesting work, and a
server as the agent performing the work. Agents have the capability of both
receiving instructions and returning information. To reiterate, clients and servers
are independent (they may be co-located or physically separated, and they need
not execute on the same platform), but they retain the ability to communicate
through an ORB interface described by an IDL file. For example, the server can
be written in C++ while the client is written in Java. Additionally, the client and
server can share the same hard drive, or they can be networked i.e. through the
World Wide Web.

 5

1.6. The objective of this project is to research and become familiar with
information technologies as applied to the Collaborative Enterprise Environment
(CEE), thereby enabling an in-house capability to develop new resource agents
for CEE. This phase I report documents initial lessons learned in the installation,
and execution of CORBA applications using the CORBA compliant software
available free from ORBacusiii. The downloadable CORBA software for both
C++ and Java is available at http://www.ooc.com/ob/download. The report is
broken down into the following sections. First we describe the location and
installation of the CORBA software for unix, linux, and Windows based operating
systems. Then we describe the use of the IDL for creating interfaces between
C++ and/or Java programs. Next we describe how to write clients and servers
using both C++ and Java code. We include both inter- and intra- network
examples. Finally, in an appendix, we provide makefiles and scripts necessary for
each step of the process. Throughout this report we will provide complete
working examples for each step.

2. LOCATING AND INSTALLING THE CORBA SOFTWARE

2.1. In order to run applications (clients and servers) under the ORBacus14
CORBA software, the files for the target platform must be downloaded. These
files can be found at the ORBacus web page:
http://www.ooc.com/ob/download.html. For installing the Java version, the file
JOB-3.1.3.tar.gz should be downloaded (or JOB-3.1.3.zip). For installing the
C++ version, the file OB-3.1.3.tar.gz should be downloaded. For instructions on
ORBacus, a manual is available in PDF form. The manual for the ORBacus
software can be downloaded from OB-3.1.3.pdf.gz. To use ORBacus for Java
without having to compile ORBacus for C++, you can download the pre-compiled
IDL-to-Java translator. For Linux this translator is jidl-3.1.3-linux.tar.gz, for
Solaris this translator is jidl-3.1.3-sloaris.tar.gz, and for Windows 95/98/NT the
translator is jidl-3.1.3-win32.tar.gz. Several JAR files are also available for Java
by downloading JOB-3.1.3.jars.tar.gz (these will be needed for creating Java
classes). Two additional sources of information on CORBA are the book
Understanding CORBA by Otte et. al.15 and The Common Object Request
Broker: Architecture and Specification, Rev 2.216

2.2. The installation of the programs is straight forward once the installation files
are unzipped. To unzip the files, type gunzip filename.tar.g then untar the files
using tar cvf filename.tar (where filename is the name of the installation
package). If the file is from a PC and in the form filename.tgz just type gunzip
filename.tgz. Then to install the specific package, follow the platform specific
directions that come with the package. NOTE: The environment settings or
variables a user needs to set depend upon the local configuration of the hardware
platform and should be specified in the instructions for installing the package.
Please see your system administrator if additional help is needed.

iii Information on the ORBacus CORBA compliant software is available at http:\\www.ooc.com

 6

3. CREATING IDL FILES

3.1. Interface description language (IDL) files define the interface between the
server and the client. The complexity of these files can range from low to high
(depending on the size of the interface, the number and type of error handlers,
etc…). We provide two, low complexity example interfaces to get started. We
describe the components of each, and we describe how to compile the
components in order to get the sub-components necessary to allow the clients and
servers to function correctly.

3.2. The first interface is simple. There is no interaction between the client and
server other than the client causes the server to execute. This interface can be
used in a local network or it can be accessed remotely through URL connections.
The following interface definition is stored in the file Hello.idl.

// IDL
module MOD_HELLO
{
 // interface definitions
 interface Int_hello
 {
 void funct_hello();
 };
};

In CORBA IDL, comments are denoted using “//”. A module is similar to a
package or class. It is optional, and ties the interfaces and functions together. In
this example, the module name is MOD_HELLO. The module name is user
defined, but must remain consistent throughout the applications. Next, we have
the interfaces. There can be several in the same module. The interface is the
gateway between servers and clients. It defines the handshaking or
communication between the servers and clients. In this example, the interface
name is Int_hello. The interface name is also user defined. Inside the
interface, there are one or more objects. In this example there is one user defined
object: funct_hello. This object is also user defined. In this case, the object
neither receives nor returns any information. The client can use this object to ask
the server to perform some task. Now that the basic IDL is written, we can create
the files required by the server and client to use this IDL.

3.2.1. First, we will create the files needed to create servers and clients
using C++. To do this we use the ORBacus IDL translator “idl”. We
execute the following from the command line:

idl Hello.idl

The result of this command is the creation of several files: Hello.cpp,
Hello.h, Hello_skel.cpp, and Hello_skel.h. These files are

 7

required when compiling. The client will require Hello.cpp and
Hello.h. The server will require Hello.cpp, Hello.h,
Hello_skel.cpp and Hello_skel.h. In addition, the server will
also require the files Hello_impl.cpp and Hello_impl.h. The
Hello_impl files contain the actual implementation of the function or
object the server will implement. The directions for writing simple
servers, clients, and implementations are found in subsequent sections.

3.2.2. The files and objects required to implement servers and clients in
Java is similar to that of C++. To create these files we use the ORBacus
Java command line translator “jidl” in the following command line:

jidl Hello.idl

This will create a sub or class directory MOD_HELLO that contains several
Java based files required for compiling (creating the Java classes) and
executing the Java code.

3.3. The second interface is slightly more complicated than the first. This
interface allows the client to provide information to the server (in this example the
client provides an integer value). The server then acts on the information and
provides data back to the client for further processing (in this example the server
provides an integer back to the client). This example is designed to show
communication between the client and the server. Like the previous example, this
IDL interface can be used for clients and servers that share the same local network
or for clients and servers on different networks. The example below is stored in
file Counter.idl

// IDL
module COUNTER_MODULE
{
 // variable definitions
 typedef long N; // length of count

 // interface definitions
 interface Count_interface
 {
 long count_funct(in long N);
 };
};

This IDL file is similar to the first example, except a variable is passed through
the interface from client to server, and an integer value is returned from the
server.

3.3.1. Similar to the previous example, to create the files for a C++ client
and/or server, from the command line type

 8

idl Counter.idl

This will create four files for the C++ implementation. Creation of the
server and client using C++ will be described in sections 4 & 6
respectively.

3.3.2. To create the files necessary for Java implementation execute

jidl Counter.idl

This creates the class directory structure for the Java implementation of
the server and client. The Java server and client will be discussed in
sections 5 & 7 respectively.

3.4. This section describes the basic approach for implementing IDL descriptions
for two types of interfaces. One interface requires no information back from the
server. It is designed to cause the server to execute some specific command or
commands. The second is an example of an interface that passes data between the
client and server. In following sections, we will describe the C++ and Java
implementations that accompany the IDL descriptions.

4. CREATING C++ RESOURCE AGENTS (SERVERS)

4.1. In this section we describe the process to develop simple resource agents or
servers using the C++ high level programming language. We provide complete
examples and instructions for compiling and executing the server. The first
example is executed when requested by a client. It prints a predefined message to
the screen, and it returns no information to the client. The second example takes
as input a positive integer, N, value from the client. It then counts from 1 to N,
while at the same time adding the integers from 1 to N. After counting is
complete, it returns the sum of the integers from 1 to N.

4.2. The code, compiling instructions, and execution instructions for the first
example are described below.

4.2.1. First we have the code for the server implementation. It is
stored in file Server.cpp

// C++
#include <OB/CORBA.h>
#include <Hello_impl.h>
#include <fstream.h>
int main(int argc,char* argv[],char*[])
{
 CORBA_ORB_var orb = CORBA_ORB_init(argc,argv);
 CORBA_BOA_var boa = orb -> BOA_init(argc,argv);

 // Program calls module “MOD_HELLO”, interface
 // “Int_hello” and creates a new object

 9

 // implementation from the Hello implementation
 MOD_HELLO_Int_hello_var p = new Hello_impl;

 CORBA_String_var s = orb ->object_to_string(p);
 const char* refFile = "Hello.ref";
 ofstream out (refFile);
 out << s << endl;
 out.close();

 // Server waits until called
 boa -> impl_is_ready(CORBA_ImplementationDef::_nil());
}

4.2.2. The server needs an implementation object. The header for the
implementation body is found in the file Hello_impl.h and shown
below:

// C++
#include <Hello_skel.h>
class Hello_impl : public MOD_HELLO_Int_hello_skel
{
 public:
 // function defined for use by the server
 virtual void funct_hello();
};

4.2.3. The code for the server implementation is stored in the file
Hello_impl.cpp and shown below.

// C++
#include <OB/CORBA.h>
#include <Hello_impl.h>
void
Hello_impl::funct_hello()
{
 cout << "Hello from AFRL/IFSD!" << endl;
}

This file, when executed will print a simple message from AFRL.

4.2.4. To compile the code for the server, the make file (found in section
10.1) can be executed with the make utility available from most C++
compilers. For unix the following command line will work:

make –f hello_server_make_file

4.2.5. To execute the server, from the command line execute the following
command:

Server

 10

This will cause the server to execute until it is terminated with a kill
command or ^c. Usually, the server will go into a wait state, where it will
stay until it is instantiated by the client.

4.2.6. In this section we have shown how to write, compile, and execute
simple servers for use with an IDL. A key point to note is that a server
written in C++ is compatible with a client written in Java and vice versa.
In the next part of this section we will give an example that can be
executed from a remote URL.

4.3. The code, compiling instructions, and execution instructions for the second
example are shown and described below.

4.3.1. First we have the code for the server implementation. It is
stored in Counter_server.cpp.

// C++
#include <OB/CORBA.h>
#include <OB/Util.h>
#include <OB/CosNaming.h>
#include <Counter_impl.h>
#include <fstream.h>
#include <stdio.h>
int main(int argc,char* argv[],char*[])
{
 try
 {
 // Create ORB
 CORBA_ORB_var orb = CORBA_ORB_init(argc,argv);
 // Create BOA
 CORBA_BOA_var boa = orb -> BOA_init(argc,argv);
 // Create implementation
 COUNTER_MODULE_Count_interface_var p = new counter_impl;
 // Get naming service
 CORBA_Object_var obj;
 try
 {
 obj = orb -> resolve_initial_references("NameService");
 }
 catch(const CORBA_ORB::InvalidName&)
 {
 cerr << argv[0] << ": can't resolve `NameService'" <<

endl;
 return 1;
 }
 if(CORBA_is_nil(obj))
 {
 cerr << argv[0] << ": `NameService' is a nil object

reference" << endl;
 return 1;
 }
 CosNaming_NamingContext_var count =

CosNaming_NamingContext::_narrow(obj);
 if(CORBA_is_nil(count))
 {
 cerr << argv[0]

<< ": `NameService' is not a NamingContext”

 11

<< “ object reference" << endl;
 return 1;
 }
 try
 {
 // Bind names with the Naming Service
 CosNaming_Name pName;
 pName.length(1);
 pName[0].id = CORBA_string_dup("p");
 pName[0].kind = CORBA_string_dup("");
 count -> bind(pName, p);
 boa -> impl_is_ready(CORBA_ImplementationDef::_nil());
 // Unregister name with the Naming Service
 count -> unbind(pName);
 }
 catch(const CosNaming_NamingContext::NotFound& ex)
 {
 cerr << argv[0] << ": Got a `NotFound' exception (";
 switch(ex.why)
 {

case CosNaming_NamingContext::missing_node:
cerr << "missing node";
break;

case CosNaming_NamingContext::not_context:
 cerr << "not context";
 break;

case CosNaming_NamingContext::not_object:
 cerr << "not object";
 break;

 }
 cerr << ")" << endl;
 return 1;
 }
 catch(const CosNaming_NamingContext::CannotProceed&)
 {
 cerr << argv[0] << ": Got a `CannotProceed exception"

<< endl;
 return 1;
 }
 catch(const CosNaming_NamingContext::InvalidName&)
 {
 cerr << argv[0] << ": Got an `InvalidName' exception"

<< endl;
 return 1;
 }
 catch(const CosNaming_NamingContext::AlreadyBound&)
 {
 cerr << argv[0] << ": Got an `AlreadyBond' exception"

 << endl;
 return 1;
 }
 catch(const CosNaming_NamingContext::NotEmpty&)
 {
 cerr << argv[0] << ": Got a `NotEmpty' exception"

<< endl;
 return 1;
 }
 }
 catch(CORBA_SystemException& ex)
 {
 OBPrintException(ex);
 return 1;
 }

 12

 return 0;
}

4.3.2. Next we have the code for the counter implementation header file.
It contains the function definitions used to implement the counter function
in the class Counter_impl, and it is stored in file Counter_impl.h

// C++
#include <Counter_skel.h>
class Counter_impl : public
COUNTER_MODULE_Count_interface_skel
{
public:
 virtual long count_funct(long);
};

4.3.3. Next we have the function implementations for the functions in the
class Counter_impl. These are stored in the file
Counter_impl.cpp

// C++
#include <OB/CORBA.h>
#include <Counter_impl.h>
long Counter_impl::count_funct(long N)
{
 long sum = 0;
 long i = 0;
 while(++i <= N){
 cout << i << "." << endl;
 sum = sum + i;
 } // while
 return sum;
}

4.3.4. To compile the counter object, we use the makefile,
counter_server_make_file, found in section 10.2. From the
command line type:

make –f counter_server_make_file

4.3.5. To execute we first need the name server running. To start the name
server, we need an IP address, a port number, and a mode of operation.
For our, example we use IP = 10.13.7.7, port 1700 (see system
administrator for other available port numbers), and
DefaultNamingContext as the mode. More information on these
can be found in the CORBA specification. To start the name server,
execute the following line:

nameserv –i –OAport 1700 > Counter.ref &

 13

Then to start the actual server, execute the following command line:

Counter_server -ORBservice NameService
iiop://10.13.7.7:1700/DefaultNamingContext

Or to start the name server then the counter server both, execute the script
start_counter_server shown in section 10.5 of the appendix.

4.3.6. In this section we described the method for executing C++ servers
remotely using a URL.

5. CREATING JAVA RESOURCE AGENTS

5.1. Simple Java example

5.1.1. Code for Java server found in file Server.java

// Java
package MOD_HELLO;
public class Server
{
 public static void main(String args[])
 {
 java.util.Properties props = System.getProperties();
 props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
 props.put("org.omg.CORBA.ORBSingletonClass",
 "com.ooc.CORBA.ORBSingleton");
 System.setProperties(props);
 org.omg.CORBA.ORB orb =
 org.omg.CORBA.ORB.init(args, props);
 org.omg.CORBA.BOA boa =
 ((com.ooc.CORBA.ORB)orb).BOA_init(args, props);
 Int_hello_impl p = new Int_hello_impl();
 try
 {
 String ref = orb.object_to_string(p);
 String refFile = "Hello.ref";
 java.io.PrintWriter out = new java.io.PrintWriter(new

 java.io.FileOutputStream(refFile));
 out.println(ref);
 out.flush();
 }
 catch(java.io.IOException ex)
 {
 System.err.println("Can't write to `" + ex.getMessage() +

"'");
 System.exit(1);
 }
 boa.impl_is_ready(null);
 }
}

5.1.2. Code for Java implementation found in file
Int_hello_impl.java

// Java

 14

package MOD_HELLO;
public class Int_hello_impl extends _Int_helloImplBase
{
 public void funct_hello()
 {
 System.out.println("Hello Analisa!");
 }
}

5.1.3. To compile the Java code, make sure all code is in the sub-directory
MOD_HELLO. Then type the following command line:

javac ./MOD_HELLO/*.java

5.1.4. To execute the Hello Server using Java, type the following
command line:

java MOD_HELLO.Server

5.2. Counter Java example

5.2.1. Code for Counter_server.java

package COUNTER_MODULE;
import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import java.io.*;
import java.util.*;
import COUNTER_MODULE.Counter_impl.*;

public class Counter_server
{
 public static void main(String args[])
 {
 Properties props = System.getProperties();
 props.put

("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");
 props.put

("org.omg.CORBA.ORBSingletonClass","com.ooc.CORBA.
ORBSingleton");

 System.setProperties(props);
 try
 {
 //
 // Create ORB
 //
 ORB orb = ORB.init(args, props);
 //
 // Parse command line arguments
 //
 String namingFile = null;
 int argc = 0;
 while(argc < args.length)
 {
 if(args[argc].equals("-f"))
 {

 15

 if(argc + 1 < args.length)
 {
 argc++;
 namingFile = args[argc];
 }
 else
 usage();
 }
 else if(args[argc].equals("-h") ||

 args[argc].equals("--help"))
 usage();
 argc++;
 }
 //
 // Create BOA
 //
 BOA boa =((com.ooc.CORBA.ORB)orb).BOA_init(args,props);
 //
 // Create some implementations
 //
 Count_interface p = new Counter_impl();
 //
 // Get naming servie
 //
 org.omg.CORBA.Object obj = null;
 if(namingFile != null)
 {
 try
 {
 FileReader r = new FileReader(namingFile);
 BufferedReader in = new BufferedReader(r);
 String ref = in.readLine();
 r.close();
 obj = orb.string_to_object(ref);
 }
 catch(IOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 }
 else
 {
 try
 {
 obj = orb.resolve_initial_references("NameServic);
 }
 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
 {
 System.out.println("Can't resolve `NameService'");
 System.exit(1);
 }
 }
 if(obj == null)
 {
 System.out.println ("`NameService' is a nil object
 reference");
 System.exit(1);
 }
 NamingContext count =
 NamingContextHelper.narrow(obj);
 if(count == null)
 {

 16

 System.out.println("`NameService' is not " +
 "a NamingContext object reference");
 System.exit(1);
 }
 try
 {
 //
 // Bind names with the Naming Service
 //
 NameComponent[] pName = new NameComponent[1];
 pName[0] = new NameComponent();
 pName[0].id = "p";
 pName[0].kind = "";
 count.bind(pName, p);
 //
 // Run implementation
 //
 boa.impl_is_ready(null);
 //
 // Unregister names with the Naming Service
 //
 count.unbind(pName);
 }
 catch(NotFound ex)
 {
 System.err.print("Got a `NotFound' exception (");
 switch(ex.why.value())
 {
 case NotFoundReason._missing_node:
 System.err.print("missing node");
 break;
 case NotFoundReason._not_context:
 System.err.print("not context");
 break;
 case NotFoundReason._not_object:
 System.err.print("not object");
 break;
 }
 System.err.println(")");
 ex.printStackTrace();
 System.exit(1);
 }
 catch(CannotProceed ex)
 {
 System.err.println ("Got a `CannotProceed'
 exception");
 ex.printStackTrace();
 System.exit(1);
 }
 catch(InvalidName ex)
 {
 System.err.println ("Got an `InvalidName' exception");
 ex.printStackTrace();
 System.exit(1);
 }
 catch(AlreadyBound ex)
 {
 System.err.println ("Got an `AlreadyBound'
 exception");
 ex.printStackTrace();
 System.exit(1);
 }
 }

 17

 catch(SystemException ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }
 private static void
 usage()
 {
 System.out.println(
 "Usage: java naming.Server [options]\n\n" +
 "Options:\n" +
 "-f FILE Read the NamingService IOR from file
 FILE.\n" +
 "-h, --help Display this help message.");
 System.exit(1);
 }
}

5.2.2. Code for Counter_impl.java

package COUNTER_MODULE;
public class Counter_impl extends
 _Count_interfaceImplBase
{
public int count_funct(int n)
 {
 int sum = 0;
 int i = 0;
 while(++i <= n){
 sum = sum + i;
 System.out.println(i + ".");
 }
 return sum;
 }
}

5.2.3. To compile the Java code, make sure all Counter Java code is in the
sub-directory COUNTER_MODULE. Create the script file from section
10.9 and call it script_java .Then type:

script_java

5.2.4. Similar to the C++ Counter Server, the name server must be
executing for the server to run properly. Follow the directions in the script
start_counter_java_server found in section 10.6 of the
appendix.

6. CREATING C++ CLIENTS

6.1. Simple C++ example client.

6.1.1. This is the code for a simple C++ client, named Client.cpp.

 18

// C++
#include <OB/CORBA.h>
#include <Hello.h>
#include <fstream.h>
int
main(int argc,char* argv[], char*[])
{
 CORBA_ORB_var orb = CORBA_ORB_init(argc,argv);
 const char* refFile = "Hello.ref";
 ifstream in(refFile);
 char s[1000];
 in >> s;
 CORBA_Object_var obj = orb -> string_to_object(s);
 MOD_HELLO_Int_hello_var hello =
 MOD_HELLO_Int_hello::_narrow(obj);

 hello -> funct_hello();
}

6.1.2. To compile the code for the simple C++ client, use the makefile,
hello_client_make_file found in section 10.3 of the appendix,
and type:

make –f hello_client_make_file

6.1.3. To execute the simple hello client type Client from the command
line. With the server already running, starting the client should cause the
server to print a simple message to its machine.

6.2. Counter C++ example

6.2.1. Here is the code for the Counter Client found in the file
Counter_client.cpp

// C++
#include <stdio.h>
#include <stdlib.h>
#include <OB/CORBA.h>
#include <OB/Util.h>
#include <OB/CosNaming.h>
// include files generated by CORBA idl
#include <Counter.h>
#include <fstream.h>
#include "functs.h"
int main(int argc,char* argv[], char*[])
{
 try
 {
 // Create ORB
 CORBA_ORB_var orb = CORBA_ORB_init(argc,argv);
 // Get naming service
 CORBA_Object_var obj;
 try
 {
 obj = orb -> get_inet_object
 ("10.13.7.7",1700,"DefaultNamingContext");
 }

 19

 catch(const CORBA_ORB::InvalidName&)
 {
 cerr << argv[0]
 << ": can't resolve `NameService'" << endl;
 return 1;
 }
 if(CORBA_is_nil(obj))
 {
 cerr << argv[0]
 << ": `NameService' is a nil object reference"
 << endl;
 return 1;
 }
 CosNaming_NamingContext_var count =
 CosNaming_NamingContext::_narrow(obj);
 if(CORBA_is_nil(count))
 {
 cerr << argv[0]
 << ": `NameService' is not a NamingContext
 object reference"
 << endl;
 return 1;
 }
 try
 {
 // Resolve names with the naming service
 CosNaming_Name pName;
 pName.length(1);
 pName[0].id = CORBA_string_dup("p");
 pName[0].kind = CORBA_string_dup("");
 CORBA_Object_var pObj = count -> resolve(pName);
 COUNTER_MODULE_Count_interface_var p =
 COUNTER_MODULE_Count_interface::_narrow(pObj);
 assert(!CORBA_is_nil(p));
 cout << "Resolved `p'" << endl;
 functs FUNCTS;
 long N;
 N = (long)FUNCTS.string2int(argv[1]);
 cout << " The true sum = "
 << ((N+1)*N)/2 << endl;
 cout << "The simulated sum = "
 << p -> count_funct(N) << endl;
 }
 catch(const CosNaming_NamingContext::NotFound& ex)
 {
 cerr << argv[0] << ": Got a `NotFound' exception (";
 switch(ex.why)
 {
 case CosNaming_NamingContext::missing_node:
 cerr << "missing node";
 break;
 case CosNaming_NamingContext::not_context:
 cerr << "not context";
 break;
 case CosNaming_NamingContext::not_object:
 cerr << "not object";
 break;
 }
 cerr << ")" << endl;
 return 1;
 }
 catch(const CosNaming_NamingContext::CannotProceed&)
 {

 20

 cerr << argv[0] << ": Got a `CannotProceed'
 exception" << endl;
 return 1;
 }
 catch(const CosNaming_NamingContext::InvalidName&)
 {
 cerr << argv[0] << ": Got an `InvalidName'
 exception" << endl;
 return 1;
 }
 catch(const CosNaming_NamingContext::AlreadyBound&)
 {
 cerr << argv[0] << ": Got an `AlreadyBound'
 exception" << endl;
 return 1;
 }
 catch(const CosNaming_NamingContext::NotEmpty&)
 {
 cerr << argv[0] << ": Got a `NotEmpty' exception"
 << endl;
 return 1;
 }
 }
 catch(CORBA_SystemException& ex)
 {
 OBPrintException(ex);
 return 1;
 }
 return 0;
}

6.2.2. Since this file uses helper functions noted by the statement
#include "functs.h", the dependent library files
functs.h & functs.cpp found in section 10.7 & 10.8 of the
appendix need to be available for compilation.

6.2.3. To compile the Counter Client, use the make file
counter_client_make_file found in section 10.4 of the appendix
and type:

make –f counter_client_make_file

6.2.4. The code for finding the name server is found inside the client. To
execute with name server inside type:

Counter_client N

where N is a positive integer. The server should count to N and return the
sum. The client should print out the sum.

7. CREATING JAVA CLIENTS

7.1. Simple Java Example

7.1.1. Code for file Client.java:

 21

// Java
package MOD_HELLO;
public class Client
{
 public static void main(String args[])
 {
 java.util.Properties props = System.getProperties();
 props.put("org.omg.CORBA.ORBClass",
 "com.ooc.CORBA.ORB");
 props.put("org.omg.CORBA.ORBSingletonClass",
 "com.ooc.CORBA.ORBSingleton");
 System.setProperties(props);
 org.omg.CORBA.ORB orb =
 org.omg.CORBA.ORB.init(args, props);
 String ref = null;
 try
 {
 String refFile = "Hello.ref";
 java.io.BufferedReader in = new
 java.io.BufferedReader(
 new java.io.FileReader(refFile));
 ref = in.readLine();
 }
 catch(java.io.IOException ex)
 {
 System.err.println("Can't read from `" +
 ex.getMessage() + "'");
 System.exit(1);
 }
 org.omg.CORBA.Object obj = orb.string_to_object(ref);
 Int_hello p = Int_helloHelper.narrow(obj);
 p.funct_hello();
 }
}

7.1.2. To compile the Java code, make sure all *.java files are in the
directory MOD_HELLO. Then type the following command line:

javac ./MOD_HELLO/*.java

7.1.3. To execute the Java client,

java MOD_HELLO.Client

This should cause the Server to print a message based on what is in the
particular server implementation.

8. SUMMARY

8.1. It is not necessary to create the files described above in any particular order.
Often times a program is written in C++. The IDL allows access to this program
from other high level languages and other platforms than the one for which the
code was written. CORBA is also useful for legacy systems. Interfaces can be
written to existing code, thereby eliminating the tedious, error prone task of
porting code. IDL over the internet, addresses two issues related to systems level

 22

engineering. First, it helps eliminate redundancy. By allowing engineers and
engineering teams to make use of remote resources, we eliminate the need to
reproduce work that has already been accomplished elsewhere. Second, IDL
enhances communication. IDL creates the framework to remotely execute many
programs and applications. This allows leaders to sit in a central location and
make use to resources and expertise scattered throughout the world.

9. FUTURE WORK

9.1. Create resource agents for Air Force programs. One good candidate is the
CENTS program that is PIed by Adaptive Inc. They are interfacing different
databases and different types of objects. Since this is the primary goal of CORBA
systems, their program would be an ideal match for demonstrating the capability.
(It also provides the opportunity to enhance the CEE system and commercialize
results of SBIR efforts.)

9.2. Write intelligent ORBs that have the ability to choose one server over another
to accomplish a particular task. Often times one server may be the ideal choice
for executing a server application; however, there are times when the identified
server may be overloaded with other processes. In this case the ORB should
make the decision to transfer the request to another server for execution. This
option has not been explored in this report.

9.3. Link the Clients, Servers, and ORBs to the CEE environment and/or an html
based browser like Netscape or Explorer.

10. APPENDIX

10.1. This is the makefile: hello_server_make_file

#hello_server_make_file
Compiler variables
CC = CC
#CC = g++

CFLAGS = -fast -pta -I/usr1/local/include -I.

Create list of libraries to link in
LIBS = -lOB -lsocket -lnsl

Program name
PROGRAM = ./Server

source files
CC_SOURCES = Hello.cpp Hello_skel.cpp Hello_impl.cpp Server.cpp

Create list of .o objects
OBJECTS = $(CC_SOURCES:.cpp=.o)

Override the built-in compile
%.o : %.cpp
$(COMPILE.c) $<

 23

Top level target for building the executable
all : $(PROGRAM)

Define how to link all the stuff
$(PROGRAM) : $(OBJECTS)
$(LINK.c) $(OBJECTS) -o $(PROGRAM) $(LIBS)

###

Clean up only the object files
clean:
\rm *~ *.o core $(PROGRAM)

10.2. This is the makefile: counter_server_make_file

Compiler variables
CC = CC
CFLAGS = -fast -pta -I/usr1/local/include -I.

Create list of libraries to link in
LIBS = -lCosNaming -lOB -lsocket -lnsl

Program name
PROGRAM = ./Counter_server

source files
CC_SOURCES = Counter.cpp Counter_skel.cpp // Counter_impl.cpp
Counter_server.cpp

Create list of .o objects
OBJECTS = $(CC_SOURCES:.cpp=.o)

Override the built-in compile
%.o : %.cpp
$(COMPILE.c) $<

Top level target for building the executable
all : $(PROGRAM)

Define how to link all the stuff
$(PROGRAM) : $(OBJECTS)
$(LINK.c) $(OBJECTS) -o $(PROGRAM) $(LIBS)

###

Clean up only the object files
clean:
\rm *~ *.o core $(PROGRAM)

10.3. This is the makefile: hello_client_make_file

#makeclient
Compiler variables
CC = CC

CFLAGS = -fast -pta -I/usr1/local/include -I.

Create list of libraries to link in
LIBS = -lOB -lsocket -lnsl

 24

Program name
PROGRAM = ./Client

source files
CC_SOURCES = Hello.cpp Client.cpp

Create list of .o objects
OBJECTS = $(CC_SOURCES:.cpp=.o)

Override the built-in compile
%.o : %.cpp
$(COMPILE.c) $<

Top level target for building the executable
all : $(PROGRAM)

Define how to link all the stuff
$(PROGRAM) : $(OBJECTS)
$(LINK.c) $(OBJECTS) -o $(PROGRAM) $(LIBS)

###

Clean up only the object files
clean:
\rm *~ *.o core $(PROGRAM)

10.4. This is the makefile: counter_client_make_file

Compiler variables
CC = CC

CFLAGS = -fast -pta -I/usr1/local/include -I.

Create list of libraries to link in
LIBS = -lCosNaming -lOB -lsocket -lnsl

Program name
PROGRAM = ./Counter_client

source files
CC_SOURCES = functs.cpp Counter.cpp Counter_client.cpp

Create list of .o objects
OBJECTS = $(CC_SOURCES:.cpp=.o)

Override the built-in compile
%.o : %.cpp
$(COMPILE.c) $<

Top level target for building the executable
all : $(PROGRAM)

Define how to link all the stuff
$(PROGRAM) : $(OBJECTS)
$(LINK.c) $(OBJECTS) -o $(PROGRAM) $(LIBS)

###

Clean up only the object files
clean:
\rm *~ *.o core $(PROGRAM)

 25

10.5. This is the script start_counter_server:

#!/bin/sh

echo
echo "******************************"
echo "* Welcome to the Server *"
echo "******************************"
sleep 2
nsid=0
srvid=0
deactivate()
{
 if test $nsid -ne 0
 then
 echo "killing "
 echo "$nsid"
 kill -9 $nsid
 fi

 if test $srvid -ne 0
 then
 kill -9 $srvid
 fi

 exit
}
server="nameserv${exe}"
ref=Counter.ref
rm -f $ref
$server -i -OAport 1700 > $ref &
nsid=$!
trap deactivate 1 2 3 4 5 6 7 8 10 12 13 14 15
echo "$ref"
echo "$nsid"
sleep 3
Counter_server -ORBservice NameService
iiop://10.13.7.7:1700/DefaultNamingContext
srvid=$!
deactivate

10.6. This is the script start_counter_java_server:

#!/bin/sh

echo
echo "******************************"
echo "* Welcome to the Server *"
echo "******************************"
sleep 2
nsid=0
srvid=0
deactivate()
{
 if test $nsid -ne 0
 then
 echo "killing "
 echo "$nsid"
 kill -9 $nsid
 fi

 26

 if test $srvid -ne 0
 then
 kill -9 $srvid
 fi

 exit
}
CLASSPATH=/usr1/OB-3.1.3/ob/lib/OB.jar:$CLASSPATH
CLASSPATH=/usr1/OB-3.1.3/ob/lib/OBNaming.jar:$CLASSPATH
export CLASSPATH

server="nameserv${exe}"
ref=Counter.ref
rm -f $ref
$server -i -OAport 1700 > $ref &
nsid=$!
trap deactivate 1 2 3 4 5 6 7 8 10 12 13 14 15
echo "$ref"
echo "$nsid"
sleep 300
java COUNTER_MODULE.Counter_server -ORBconfig
java_configuration.txt
deactivate

The shell script above uses a configuration text file with the IP address, port
address, and mode inside of it. The name of the script is
java_configuration.txt and its contents are shown below:

Concurrency models
ooc.orb.conc_model=threaded
ooc.boa.conc_model=thread_pool
ooc.boa.thread_pool=5

#Initial services
ooc.service.NameService=iiop://10.13.7.7:1700/DefaultNamingContext

10.7. This is the library file functs.h. This module contains helper
functions used by other classes.

//functs.h
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <math.h>
#include <stddef.h>
#include <ctype.h>

class functs {
 private:

 public:
 functs(){}; // constructor
 ~functs(){free_memory();}; // destructor
 void free_memory(){}; // frees dynamic memory

 int string2int(char*); // converts a string to an integer
 void int2string(int,char*); // converts and integer to a string
 int random_funct(int); // returns a random integer

 27

 void upper2lower(char*,char*); // converts upper case to lower
 float max(float,float); // returns maximum float
 float min(float,float); // returns minimum float
 double perms(int,int); // calculates number of permutations
}; // functs

10.8. This file, named functs.cpp, defines functs.h above.

// functs.cpp
#ifndef _functs_def
 #define _functs_def
 #include "functs.h"
#endif

/***/
/* */
/* perms */
/* */
/***/
//
// Returns the number of permutations.
//
double functs::perms(int I,int J){
 double answer;
 int i;

 if((J > I) || (I < 0) || (J <
 0)){printf("ERROR!\n");exit(1);}
 answer = 1.0;
 i = 1;
 while(++i <= I){
 answer *= (double)i;
 } // while

 J = I - J;
 i = 1;
 while(++i <= J){
 answer /= (double)i;
 } // while

 return answer;
}; // perms

/***/
/* */
/* int2string */
/* */
/***/
//
// Converts and integer to a string.
//
void functs::int2string(int n,char* number){
 int i;int k;int j;
 int num[4];
 i = 4;while(--i > -1){j=(int)pow(10.0,(double)i);k =
 n/j;num[i] = k;n-=(k*j);}
 j = 0;i = 4;
 number[0]='0';number[1]='\0';
 while(--i > -1){
 if(num[i]>0){
 ++i;
 number[i] = '\0';

 28

 while(--i > -1){
 if(num[i]==0){number[j]='0';}
 else if(num[i]==1){number[j]='1';}
 else if(num[i]==2){number[j]='2';}
 else if(num[i]==3){number[j]='3';}
 else if(num[i]==4){number[j]='4';}
 else if(num[i]==5){number[j]='5';}
 else if(num[i]==6){number[j]='6';}
 else if(num[i]==7){number[j]='7';}
 else if(num[i]==8){number[j]='8';}
 else if(num[i]==9){number[j]='9';}
 else {printf("Error: int2string\n");exit(1);}
 j++;
 } // while
 } // if
 } // while
}; // int2string

/***/
/* */
/* upper2lower */
/* */
/***/
//
// Converts upper to lower case.
//
void functs::upper2lower(char* lower ,char* upper){
 int n = strlen(upper);
 int i=-1;while(++i<n){
 if((upper[i]>='A')&&(upper[i]<='Z')){lower[i]=(char)((int)
 upper[i]|(int)32);}
 else{lower[i]=upper[i];}
 }
 lower[n]='\0';
}; // upper2lower

/***/
/* */
/* min */
/* */
/***/
//
// Returns the minimum of two floats.
//
float functs::min(float a,float b){
 float answer;
 if(a < b){answer = a;}
 else{answer = b;}
 return answer;
}; // min

/***/
/* */
/* max */
/* */
/***/
//
// Returns the maximum of two floats.
//
float functs::max(float a,float b){
 float answer;
 if(a > b){answer = a;}
 else{answer = b;}

 29

 return answer;
}; // max

/***/
/* */
/* random_funct */
/* */
/***/
//
// This function returns a random number.
//
// Assumptions: -- Integers are represented as 2's comp numbers
// -- Each memory location is 8 bits (1 byte)
// eg: 16 bits => a range of values from
// - (2 ^ 15) to (2 ^ 15 - 1)
//
// Inputs:
// no => largest possible value of rand number
//
// Outputs:
// processor => random processor number, range(1 to no)
int functs::random_funct(int no){
 int x = -1;

 while(x <= 0 || x > no){
 x = (int)((float)no * rand() / RAND_MAX);
 }
 return x;
}; // random_funct

/***/
/* */
/* string2int */
/* */
/***/
//
// This function converts character strings to integers.
//
int functs::string2int(char* word){
 int i, int_val, result;

 result = i = 0;
 for (i=0; word[i] >= '0' && word[i] <= '9'; i++){
 int_val = word[i] - '0';
 result = result*10 + int_val;
 } // while
 return result;
}; // string2int

10.9. This executable shell script, script_java, is used to compile the Java
code for the Counter Server:

#!/bin/sh
echo
echo "**********************************"
echo "* Welcome to the Java script *"
echo "**********************************"
$echo "unix"
CLASSPATH="/usr1/JOB3.1.3/naming/demo/classes:$CLASSPAT
CLASSPATH="/usr1/JOB-3.1.3/naming/lib:$CLASSPATH"
CLASSPATH="/usr1/OB3.1.3/ob/lib/OBNaming.jar:$CLASSPATH"

 30

CLASSPATH="/usr1/OB-3.1.3/ob/lib/OB.jar:$CLASSPATH"
CLASSPATH="$OB_LIB:$CLASSPATH"
export CLASSPATH

echo "compiling …"
javac ./COUNTER_MODULE/*.java

1 Petrie,C. J., “Agent-Based Engineering, the Web, and Intelligence”, IEEE Expert, December, 1996.
2 Genesereth, M. R., “An Agent-Based Approach to Software Interoperability”, Proceedings of the DARPA
Software Technology Conference, 1992.
3 Schmidt, D. C. and S. Vinoski, “Object Interconnections, Introduction to Distributed Object Computing
(Column 1)”, C++ Report Magazine, January, 1995.
4 Franklin, S. and A. Graesser, “Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents”,
Proceedings of the Third International Workshop on Agent Theories, Architectures, and Languages,
Springer-Verlag, 1996.
5 http://www.crystaliz.com/logicware/mubot.html
6 Russell, S. J. and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, pp. 33, 1995.
7 Maes, P., Artificial Life Meets Entertainment: Life like Autonomous Agents”, Communications of the
ACM, Vol. 38, pp. 108-114, 1995.
8 Smith, D. C., A. Cypher, and J. Spohrer, “KidSim: Programming Agents Without a Programming
Language”, Communications of the ACM, Vol. 37, pp. 55-67, 1994.
9 Hayes-Roth, B., “An Architecture for Adaptive Intelligent Systems”, Artificial Intelligence, Vol. 72, pp.
329-365, 1995.
10 http://activist.gpl.ibm.com:81/WhitePaper/ptc2.htm
11 Wooldrige, M. and N. R. Jennings, “Agent Theories, Architectures, and Languages: a Survey”,
Intelligent Agents, Springer-Verlag, pp. 1-22, 1995.
12 http://www.ai.mit.edu/people/sodabot/slideshow/total/P001.html
13 Brustoloni, J. C., “Autonomous Agents: Characterization and Requirements”, Carnegie Mellon Technical
Report CMU-CS-91-204, Carnegie Mellon University, 1991.
14 http://www.ooc.com
15 Otte, R., P. Patrick, and M. Roy, “Understanding CORBA”, Prentice Hall, 1996.
16 Download OMG Document 98-02-33 from http://www.ooc.com/ob/corba.html

